

NRC at i2b2: one challenge, three practical tasks, nine statistical systems,
hundreds of clinical records, millions of useful features.

Berry de Bruijn, Colin Cherry, Svetlana Kiritchenko, Joel Martin, Xiaodan Zhu
Institute for Information Technology, National Research Council, Canada

Abstract

The team from National Research Council Canada,
Institute for Information Technology, submitted
systems for all three tasks within the 2010 I2B2
challenge. Each of the systems is built around a
(semi-) supervised machine learning paradigm where
elements of the source texts are represented as bags-
of-features. The features were mostly derived from
the text itself augmented with information from
external sources: UMLS, cTAKES, and Medline. Our
best scoring systems gave the following F-scores:
task-1: 0.8523; task-2: 0.9362; task-3: 0.7313. We
found that the greatest improvements for all three
systems came from 'feature engineering' where
external sources gave moderate improvements.

Introduction

The team from National Research Council Canada,
Institute for Information Technology, submitted
systems for each of the three tasks within the
challenge. Given the differences between the three
tasks, the approaches were quite different, although a
number of characteristics are shared among the
systems.

Each of the systems is built around a (semi)
supervised machine learning paradigm where
elements of the source texts are represented as bags-
of-features. Patterns between features and desired
('ground truth') output in the training texts are learned
by the system and this allows it to generate output for
observed feature patterns in test texts. We can group
the dimensions in the feature space as follows:
• surface features of that word (or token)
• concept mapping features of words and terms
• context features of that word
• features for the sentence in which the word occurs
• features for the section in which the word occurs
• features for the entire document

In most cases, the features are binary – i.e., either
'present' or 'absent' – and represented in a sparse
vector – i.e., only 'present' features are written out.

Word surface features include: the word/token itself,
whether it is a long/average/short word; whether it is
all-uppercase, all-lowercase, or mixed-case; or all-
digits or a mix of digits and letters; whether it

contains punctuation, or is punctuation-only. They
also include character-four-grams and word stems.

Concept mapping features are derived from existing
annotation tools, namely cTAKES1, MetaMap2, and
ConText3. Inspired by [4], we also use the Brown
clustering algorithm5 to create 7-bit hierarchical word
clusters from the provided unlabeled data.
Additionally, a few pattern matching algorithms from
our own libraries were applied to cluster words and
terms into more general concepts. These include:
matching for negation words, auxiliary verbs, words
indicating possibility or uncertainty, family members,
past tense verbs, as well as terms from a symptom
list, reaction word list, and preposition word list.

Context features include the token features of the
neighbouring words with the window spanning up to
4 tokens before to 4 tokens after the word, as well as
word bi/tri/quad-grams and skip-n-grams.

Sentence features include whether the sentence is
long / average / short; upper/lower case letters were
seen; digits were seen; sentence starts with an
enumeration token; sentence ends with a colon;
sentence contains possible / history / family /
negation words; and whether verbs indicate past or
future tense.

Section features: the (assumed) section headings are
identified as the most recently seen all-caps line
ending with a colon; the sub-section headings (if
present) are assumed to be the most recently seen
mixed-case line ending with a colon.

Document features include: upper-case / lower-case
patterns seen across the document, and whether the
document is long / average / short.

Task 1 system: design and performance

Task 1 concerns the identification of key concepts
anywhere in the source text, and includes
determining the exact boundaries of the concept, as
well as the class of the concept ('problem', 'test', or
'treatment'). Concepts are non-overlapping and non-
nested.

In our system, concept tagging is carried out using a
discriminative semi-Markov HMM, trained using
passive-aggressive online updates. Semi-Markov
models6 are Hidden Markov Models that tag multi-

token spans of text, as opposed to single tokens. This
allows us to conduct information extraction without
devising a Begin/Inside/Outside (BIO) tagging
formalism; instead, we need only four tags: outside,
problem, treatment, and test. Outside is constrained
to tag only single words, while the others can tag
spans up to 30 tokens in length.

The semi-Markov model provides two major
advantages over BIO. First, by labelling multi-token
spans, labels cohere naturally. This allows the tagger
to perform well without tracking the transitions
between labels. Second, semi-Markov models allow
much greater flexibility in feature construction, as
one has access to the entire text of the concept as it is
tagged, allowing easy inclusion of features such as
concept length.

Semi-Markov models are generally trained as CRFs.
However, we found CRF training to be too slow and
memory intensive for our large feature sets. Instead,
we train using an online algorithm similar to Collins’
structured perceptron7, called the Passive-Aggressive
(PA) algorithm8. In particular, we use a loss-driven
variant with a 0-1 cost. PA learning makes several
passes through the training set. In each pass, each
training example is visited once and decoded to find
the max-loss response. The weight vector is then
adjusted with the smallest possible update that will
separate the correct tagging from the max-loss
response by a margin of 1. During development, PA
consistently outperformed a structured perceptron.

Table 1.1 shows the contributions of various feature
groups, as measured by performance on a held-out
development set drawn from all four hospitals,
containing 3.1K sentences. We begin with a standard
part-of-speech tagging feature set in (a), as described
by [9]. This is augmented to indicate which features
come from the first or last token in a concept, which
is necessary for good boundary accuracy. In (b), we
add word generalization features derived from lower-
casing, word shape (the token “Chem-7” becomes
“Aa-0”), and the 7-bit Brown clusters. We then add
task-specific data in (c), in the form of section-
heading features and features derived from the
MetaMap and cTAKES taggers.

Up until this point, no features have required semi-
Markov, multi-token functionality. We explore these

features next in (d). Unfortunately, straightforward
semi-Markov features, such as concept length, were
not helpful. However, we found the following to be
useful:

Bracket matching: indicates if a concept has
mismatching round brackets

Concept sequence: using simplified MetaMap labels
(designed to match the task concepts) and cTAKES
chunk labels, we generate features indicating the
sequence of labels completely contained within a
proposed concept, so that “trace edema at ankles”
becomes “umls_problem umls_body_part”. This
allows the system to learn, for example, that a body-
part alone is unlikely to be a problem, but a concept
containing a problem indicator followed by a body
part is probably a problem.

Preposition counting: for concepts with three or
more words, we include a feature that counts the
number of prepositions in the concept. This is
designed to capture the annotation standard, which
encourages at most one preposition.

Function word sequence: similar to the concept
sequence feature, we also include a function word
sequence, which allows us to generalize a concept to
patterns such as “the * with the *”.

Finally, in (e) we add transition features in the form
of tag bigrams and trigrams, such as “test outside
problem”. These were initially harmful; however, if
we augment outside tags for common words with
their lexical items, we can create meaningful tag n-
grams, such as “test out_for problem”, which are
helpful.

Since the PA algorithm has no explicit regularization,
it is helpful to average the parameters values over all
updates7. We report results using this averaged
weight vector. We used cross-validation to determine
that 15 passes through the training data was sufficient
for good performance. The complete system, which
includes all of the features described above, trains in
about 1.5 hours on modern hardware, and assigns
1.1M features non-zero weights. The effective feature
space explored contains 4.2M features. We did not
find over-fitting to be an issue.

For the official test runs, we selected three system
variations: (1) the complete system; (2) a system that
did not use UMLS or cTAKES features; (3) a system
that included self-training on unlabelled data10. Table
1.2 summarizes performance on the test set.

The results demonstrate that the external sources of
semantic and syntactic tagging (UMLS and
cTAKES) are beneficial; together they improve F-
measure by 1.5 percentage points. Unfortunately,

Feature Set Rec Prec F
(a) Standard part-of-speech .793 .832 .812
(b) + lowercase, shape, clusters .807 .840 .823
(c) + headers, external taggers .818 .848 .833
(d) + semi-Markov features .826 .858 .842
(e) + tag trigrams w/ annotation .829 .859 .844
Table 1.1: Concept tagging feature contributions.

bootstrapping on the unlabelled data (System 3)
showed no improvement.

 True
Pos

False
Neg

False
Pos

Recall Prec F-
score

Exact
Sys-1 37646 7363 5683 .8364 .8688 .8523
Sys-2 36776 8233 6125 .8170 .8572 .8366
Sys-3 37663 7346 5787 .8367 .8668 .8515
Inexact
Sys-1 41339 3670 1990 .9167 .9322 .9244
Sys-2 40783 4226 2118 .9037 .9246 .9140
Sys-3 41421 3588 2029 .9184 .9305 .9244

Table 1.2: Test set performance for the three systems
– for exact and inexact spans.

Task 2 system: design and performance

This task is phrased as follows: for every 'problem'
concept in a text, assert whether that concept was
found to be present, absent, possible, conditional,
hypothetical, or associated with someone else.

We solve this task in two stages. In stage 1, we
generate assertion class predictions for every word
that is part of a 'problem' concept. In stage 2, a
secondary classifier predicts a class for the complete
concept based on the (various) per-word predictions.

In stage 1, each word is represented as a large, sparse,
binary feature vector, as described in the
Introduction. Three classifiers are trained and applied
independently: (1) the SVM-multiclass from the
SVM-light/SVM-struct library11, which outputs one
score per class per word; (2) LibSVM12, where six
classifiers are trained and applied in a one-vs-rest set-
up, resulting in one score per class per word; and (3)
an in-house multiclass passive-aggressive learner (see
Task-1), outputting one score per class per concept.
The stage 2 classifier used SVM-multiclass with a
linear kernel, default parameter settings and a C-
parameter value of 20,000, as selected using a
development set.

Feature Set F
(a) Words, word n-grams, character n-grams .899
(b) + token/ sentence/ section/ doc features .924
(c) + taggers: MetaMap / cTAKES / ConText .937
(d) + all features from neighbouring words .944
Table 2.1: Assertion task feature contributions.

The features used in stage 1 were virtually all
features mentioned in the Introduction. All groups of
features benefited performance: table 2.1 summarizes
how different groups of features contributed to the F-
score when sequentially inserted, as tested on one
hold-out set.

Given this general architecture, we produced three
variants for our official submission:

• System 1: the complete two-stage process, as
described above.

• System 2: a simplified system. Stage 1 consisted of
SVM-multiclass alone predicting word-level classes.
Stage 2 remained unchanged.

• System 3: designed to improve minority class
recall, even if it comes at the expense of reduced
overall performance. The output of System 1 was
overruled when the LibSVM score on 'associated-
with-someone-else'-vs-rest exceeded a hand-set
threshold for any of the words in a concept. The same
was then done for 'hypothetical', 'conditional', and
'possible' – mimicking the order specified in the
challenge guidelines. If none of the scores overruled
System-1 output, the original output was retained.

 True
Pos

False
Neg

False
Pos

Recall Prec F-
score

Sys-1 17366 1184 1184 .9362 .9362 .9362
Sys-2 17338 1212 1212 .9347 .9347 .9347
Sys-3 17197 1353 1353 .9271 .9271 .9271

Table 2.2: Test set performance for the three
systems.

System 1 achieved 93.62% accuracy. Table 2.3
shows the class-by-class confusion matrix between
prediction and truth. The matrix shows that despite
efforts to balance type-1 errors and type-2 errors, the
classifier still tends to favour the majority class.
Fishing out the 'conditional' cases was troublesome,
with a recall only slightly above 15%. Also, the
mislabelling of true 'possible' cases as 'present'
accounted for 33% of our system’s mistakes.

System 2, while being much simpler in design, gave
by and large comparable results: an accuracy of
0.9347 and a similar contingency table (not shown).
Most errors were caused by a yet stronger preference
to label cases as 'present', the majority class. The
higher System-1 score indicates that there is still
some independency between its classifiers.

System 3 performed as expected: it increased recall
(reflected by higher numbers on the diagonal of
Table 2.4) for all the minority classes – including, in
fact, 'absent' – even as precision dropped enough to
lower micro-averaged accuracy to 0.9271. Average
F-score, when calculated per class and then macro-
averaged, is .774 for System 3, up from .753 for
System 1 and .740 for System 2.

pred
tru

th

ab
se

nt

A
W

SE

co
nd

iti
-

on
al

hy
po

-
th

et
ic

al

po
ss

ib
le

pr
es

en
t

absent 3370 20 6 13 14 121
AWSE 3 105 1 1
cond 26 1
hypoth. 4 617 10 48
possib 14 1 15 468 74
present 218 20 138 71 391 12780

Table 2.3: System 1 performance confusion matrix;
concept counts for class predictions (rows) and truths
(columns). AWSE=associated-with-someone-else

pred

tru
th

ab
se

nt

A
W

SE

co
nd

iti
-

on
al

hy
po

-
th

et
ic

al

po
ss

ib
le

pr
es

en
t

absent 3409 9 5 12 21 273
AWSE 4 124 1 2
cond 1 44 2 30
hypoth. 4 621 11 53
possib 20 12 491 159
present 171 12 122 69 360 12508

Table 2.4: System 3 performance confusion matrix

Task 3 system: design and performance

The goal of task 3 is to determine the relationship
between a pair of concepts provided that the two
concepts appear in the same sentence and one (or
both) of them is a 'problem' concept. Task 3 defines
five categories of treatment-problem relations, two
categories of test-problem relations, and one category
of problem-problem relation.

We trained three separate classifiers to categorize
treatment-problem, test-problem, and problem-
problem relations respectively. The classification
framework was maximum entropy (ME), and we
used an OpenNLP ME toolkit13. Relations were
classified independently; i.e., a decision made on one
concept pair does not affect other decisions.

Our baseline feature set is similar to that of [14],
which was further augmented with features derived
directly from the concepts and assertion-tagged text
and from the external MetaMap and cTAKES
taggers, as described in the Introduction. For the
convenience of later discussion, we call all these
features augmented-baseline features. Note that the
specific feature sets used by the three classifiers were
different from each other, which were decided during
development.

In addition, we found the following features and
design decisions to be beneficial.

a) Exploiting parsing trees. We parsed the input texts
using the Charniak parser with its improved, self-
trained biomedical parsing model15. These were then
transferred into Stanford dependencies16. Features
extracted included words, their tags (e.g., POS tags),
and arc labels on the dependency path between the
minimal trees that cover the two concepts, along with
the word and tags of their common ancestor, and the
minimal, average and maximal tree distances to the
common ancestor. We observed an additional 0.4
point gain in F-score on 5-fold cross validation on the
training set.

b) Balancing category distribution. In the training
set, some of the relationship types were observed
much more often than others – e.g., there were about
8-times more negative problem-problem relations
than positive ones. We addressed this issue by down-
sampling the training set to a pos/neg ratio between
1:2 and 1:4, as selected using a development set. This
reduced a classifier's bias towards the majority class,
and improved the overall F-score by about 0.3 point
on 5-fold cross validation. This was especially
important when a system included unsupervised
bootstrapping (as our System 3 did), since bias is
amplified when bootstrapping is applied.

c) Using semantics features. We used Medline as a
semi-structured source of knowledge, calculating
Pointwise Mutual Information (PMI) between two
concepts as found in Medline abstracts to
approximate the relatedness of these concepts. This
weak approximation to structured knowledge of
concept relationships still yielded about 0.2 point
improvement during development.

d) Semi-supervised training. We also applied
bootstrapping on the provided unlabeled data. For
this, our system for Task-1 was applied to the
unlabeled documents to provide concept span tags
and labels. This bootstrapping gave us about 0.4
point improvement. As we attempted self-training for
all three tasks, it is interesting that it was successful
only for Task 3. We suspect that this may be because
Task 3 had the smallest amount of training data.

We submitted three system variants for Task 3.
System 1 used the augmented-baseline features
discussed above as well as the dependency features.
System 2 additionally employed the PMI statistics
from Medline collocations, and System 3 included
bootstrapping on the provided unlabeled documents.

Table 3.1 shows the performance of each system
variant on the final test set. The system improved its
exact F-score with each version, with Medline PMI
providing a 0.3 gain, and self-training providing an
additional 0.4 gain.

 True
Pos

False
Neg

False
Pos

Recall Prec- F-
score

Exact
Sys-1 6296 2809 1965 .6902 .7611 .7239
Sys-2 6269 2801 1896 .6911 .7677 .7274
Sys-3 6288 2782 1838 .6932 .7738 .7313
Clustered
Sys-1 6704 2366 1522 .7391 .8149 .7752
Sys-2 6678 2392 1487 .7362 .8178 .7749
Sys-3 6641 2429 1485 .7321 .8172 .7723

Table 3.1: Test set performance for the three systems
for exact class matches and clustered-class matches.

Conclusions

The team from NRC-IIT posted sound results for
each of the three tasks in the 2010 i2b2 challenge.
Our best scoring systems, built from supervised and
semi-supervised statistical machine learning
components, gave an F-score of 0.8523 on task 1,
0.9362 on task 2, and 0.7313 on task 3. Our choices
in machine learning algorithms allowed us to expand
the feature space without risking overfitting. A wide
range of textual features gave more significant
improvements while the gains from the knowledge-
rich resources we applied -- MetaMap, cTAKES, and
MedLine – seemed moderate.

Acknowledgments

Lynn Wei and Chengbi Dai provided help
programming system components.

The 2010 i2b2/VA challenge and the workshop are
funded in part by the grant number U54-LM008748
on Informatics for Integrating Biology to the Bedside
from National Library of Medicine, and facilities of
the VA Salt Lake City Health Care System with
funding support from the Consortium for Healthcare
Informatics Research (CHIR), VA HSR HIR 08-374
and the VA Informatics and Computing
Infrastructure (VINCI), VA HSR HIR 08-204.
MedQuist co-sponsored the 2010 i2b2/VA challenge
meeting at AMIA.

References

1. Savova GK, Kipper-Schuler K, Buntrock JD,
Chute CG. UIMA-based clinical information
extraction system. LREC: Towards enhanced
interoperability for large HLT systems 2008.

2. Aronson AR, Lang F-M. An overview of
MetaMap: historical perspective and recent
advances. J Am Med Inform Assoc.
2010;17:229-36.

3. Harkema H, Dowling JN, Thornblade T,
Chapman WW. ConText: An algorithm for
determining negation, experiencer, and temporal
status from clinical reports. J Biomed Inform.
2009;Oct; 42(5): 839-51.

4. Miller S, Guinness J, Zamanian A. Name
Tagging with Word Clusters and Discriminative
Training. In HLT-NAACL 2004, Boston, USA.

5. Brown PF, Della Pietra VJ, deSouza PV, Lai JC,
Mercer RL. Class-Based n-gram Models of
Natural Language. Computational Linguistics,
1992;18(4):467–479.

6. Sarawagi S, Cohen WW. Semimarkov
conditional random fields for information
extraction. In ICML 2004.

7. Collins M. Discriminative training methods for
Hidden Markov Models: Theory and
experiments with perceptron algorithms. In
EMNLP 2002.

8. Crammer K, Dekel O, Keshet J, Shalev-Shwartz
S, Singer Y. Online Passive-Aggressive
Algorithms. JMLR 2006;7(Mar):551—585

9. Ratnaparkhi A. A maximum entropy part-of-
speech tagger. In EMNLP 1996.

10. McClosky D, Charniak E, Johnson M. Effective
Self-Training for Parsing. In HLT-NAACL
2006, Brooklyn, USA.

11. Joachims T. Making Large-Scale SVM Learning
Practical. In: B. Schölkopf and C. Burges and A.
Smola (ed.). Advances in Kernel Methods -
Support Vector Learning. MIT Press, 1999.

12. Chang C-C, Lin C-J. LIBSVM : a library for
support vector machines, 2001. Software
available at www.csie.ntu.edu.tw/~cjlin/libsvm

13. http://maxent.sourceforge.net/index.html
14. Patrick J, Li M. A Cascade Approach to

Extracting Medication Events. In: Proc.
Australasian Language Technology Workshop
(ALTA) 2009.

15. McClosky D. Any Domain Parsing: Automatic
Domain Adaptation for Natural Language
Parsing. Ph.D. thesis, Brown University 2010.

16. de Marneffe M-C, MacCartney B, Manning CD..
Generating Typed Dependency Parses from
Phrase Structure Parses. In LREC 2006.

